Transplantation of embryonal spinal cord nerve cells

Neurol Res. 2002 Jun;24(4):355-60.

Transplantation of embryonal spinal cord nerve cells cultured on biodegradable microcarriers followed by low power laser irradiation for the treatment of traumatic paraplegia in rats.

Rochkind S, Shahar A, Amon M, Nevo Z.

Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Israel.

This pilot study examined the effects of composite implants of cultured embryonal nerve cells and laser irradiation on the regeneration and repair of the completely transected spinal cord. Embryonal spinal cord nerve cells dissociated from rat fetuses and cultured on biodegradable microcarriers and embedded in hyaluronic acid were implanted in the completely transected spinal cords of 24 adult rats. For 14 consecutive post-operative days, 15 rats underwent low power laser irradiation (780 nm, 250 mW), 30 min daily. Eleven of the 15 (73%) showed different degrees of active leg movements and gait performance, compared to 4 (44%) of the 9 rats with implantation alone. In a controlgroup of seven rats with spinal cord transection and no transplantation or laser, six (86%) remained completely paralyzed. Three months after transection, implantation and laser irradiation, SSEPs were elicited in 69% of rats (p = 0.0237) compared to 37.5% in the nonirradiated group. The control group had no SSEPs response. Intensive axonal sprouting occurred in the group with implantation and laser. In the control group, the transected area contained proliferating fibroblasts and blood capillaries only. This suggests: 1. These in vitro composite implants are a regenerative and reparative source for reconstructing the transected spinal cord. 2. Post-operative low power laser irradiation enhances axonal sprouting and spinal cord repair.
PMID: 12069281 [PubMed – indexed for MEDLINE]

Leave your comment

Please enter your name.
Please enter comment.
We're always here to help you.